A Trefftz Polynomial Space-Time Discontinuous Galerkin Method for the Second Order Wave Equation | SIAM Journal on Numerical Analysis | Vol. 55, No. 1 | Society for Industrial and Applied Mathematics
نویسندگان
چکیده
A new space-time discontinuous Galerkin (dG) method utilizing special Trefftz polynomial basis functions is proposed and fully analyzed for the scalar wave equation in a second order formulation. The dG method considered is motivated by the class of interior penalty dG methods, as well as by the classical work of Hughes and Hulbert [Comput. Methods Appl. Mech. Engrg., 66 (1988), pp. 339–363; Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 327–348]. The choice of the penalty terms included in the bilinear form is essential for both the theoretical analysis and for the practical behavior of the method for the case of lowest order basis functions. A best approximation result is proven for this new space-time dG method with Trefftz-type basis functions. Rates of convergence are proved in any dimension and verified numerically in spatial dimensions d = 1 and d = 2. Numerical experiments highlight the effectivness of the Trefftz method in problems with energy at high frequencies.
منابع مشابه
A Trefftz Polynomial Space-Time Discontinuous Galerkin Method for the Second Order Wave Equation
A new space-time discontinuous Galerkin (dG) method utilizing special Trefftz polynomial basis functions is proposed and fully analyzed for the scalar wave equation in a second order formulation. The dG method considered is motivated by the class of interior penalty dG methods, as well as by the classical work of Hughes and Hulbert [Comput. Methods Appl. Mech. Engrg., 66 (1988), pp. 339–363; Co...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Hamilton--Jacobi--Bellman Equations with Cordes Coefficients | SIAM Journal on Numerical Analysis | Vol. 52, No. 2 | Society for Industrial and Applied Mathematics
We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with nonsmo...
متن کاملTransparent boundary conditions for a discontinuous Galerkin Trefftz method
The modeling and simulation of electromagnetic wave propagation is often accompanied by a restriction to bounded domains which requires the introduction of artificial boundaries. The corresponding boundary conditions should be chosen in order to minimize parasitic reflections. In this paper, we investigate a new type of transparent boundary condition for a discontinuous Galerkin Trefftz finite ...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملDiscontinuous Galerkin Finite Element Method for the Wave Equation
The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...
متن کامل